Stellar Distances

The Basic Yardsticks

- The Astronomical Unit (AU)
- The Light Year (ly)
- The Parsec (pc)

THE ASTRONOMICAL UNIT

- Astronomical Unit - average distance from the Earth to the Sun
- $1 \mathrm{AU}=1.5 \times 10^{8} \mathrm{~km}=9.3 \times 10^{7}$ miles
- The average distance between Jupiter and the Sun is 5.2 AU.

Planets

1. Mercury
0.39 AU

2. Venus

3. Earth

4. Jupiter

5. Saturn
9.57 AU
19.2 AU

6. Uranus
30.1 AU

7. Neptune
0.72 AU

THE LIGHT YEAR

- One light year is the distance a beam of light travels during a one year trip across the void of space.
- Speed of Light $=186,000$ miles/second
- 3×10^{8} meters/second
- $1 \mathrm{ly}=63,240 \mathrm{AU}=9.46 \times 10^{12} \mathrm{~km} \simeq 6$ trillion miles
- Proxima Centauri is just over 4.2 ly from Earth.
- FYI...in 2016 a terrestrial planet in Proxima Centauri's habitable zone was discovered!

Betelgeuse - 300 ly
Sirius - 7 ly

Aldebaran - 76 ly

$$
\text { Rigel - } 1000 \text { ly }
$$

The distance to the Andromeda Galaxy is approximately 2.2 million ly.

THE PARSEC

- This distance at which 1 AU subtends an angle of 1 arcsecond (1/3600 degree).
- $1 \mathrm{pc}=3.09 \times 10^{13} \mathrm{~km}=3.26 \mathrm{ly}$
- $1 \mathrm{kpc}=10^{3} \mathrm{pc}$
- $1 \mathrm{Mpc}=10^{6} \mathrm{pc}$

Milky Way Center (made of stars, not caramel and nougat).

The distance from Earth to the center of the Milky Way Galaxy is approximately 26,000 ly or 8 kpc .

The distance to Galaxy M63 is 35 million light years or 11 megaparsecs.

Measuring a Star's Distance

- Parallax - the apparent change in the position of a star due to the motion of the Earth; Nearby objects exhibit more parallax that remote ones.
- Distance (parsecs) = $1 /($ parallax angle $)$

p

Parallax

Heliocentric Stellar Parallax

Stellar Parallax Example

- Alpha Centauri: p = 0.756"
- $\mathrm{d}=1 / \mathrm{p}=1 / 0.756^{\prime \prime}$
- $\mathrm{d}=1.323$ parsecs $=4.312$ light years

Measuring a Star's Distance

- Parallax - the apparent change in the position of a star due to the motion of the Earth; Nearby objects exhibit more parallax that remote ones.
- Distance (parsecs) = $1 /($ parallax angle $)$

p

Stellar Parallax

- All Known Stars: p < 1.0"
-This means that there are no stars closer than 1 pc (3.26 ly)!
- Most of the brightest stars in the sky are so distant that their parallax angles can not be measured!
- They are bright due to their amazing luminosities!!!!!!

BRIGHTNESS

- Stellar brightness is affected by
- Distance
- Size
- Temperature
- There are two brightness scales...
- Apparent Magnitude
- Absolute Magnitude

Luminosity

- Surface temperature and surface area determine the luminosity of a star.
- Luminosity : the rate at which a star radiates energy.

Absolute Magnitude $\left(\mathrm{M}_{\mathrm{v}}\right)$

- The magnitude that a star would have if it were 10 parsecs away from Earth.
- Absolute magnitude is another way to represent a star's luminosity.
- To calculate M_{y}, you must know the star's apparent magnitude and distance (using the parallax method).

Absolute Magnitude \& Luminosity

Absolute Magnitude	Luminosity (x Sun)
-5	10,000
0	100
5	1
10	0.01

How useful is Absolute Magnitude?

- A star's luminosity is affected by...
- Size
- Temperature
- These things determine the luminosity and hence the absolute magnitude (M).
- A star's 'M' can easily be determined by examining its temperature (spectroscopy).
- Once we have 'm' and 'M', we have another way to determine the distance to that star without using parallax.
- Distance Modulus $=\mathrm{m}_{\mathrm{v}}-\mathrm{M}_{\mathrm{v}}$
$\cdot \mathrm{m}_{\mathrm{v}}-\mathrm{M}_{\mathrm{v}}=5 \log \mathrm{~d}-5$
- Where d is the distance to the star in parsecs.

Distance Modulus $(\mathrm{m}-\mathrm{M})$	Distance d (pc)
-4	1.6
-2	4.0
0	10
2	25
4	63
10	1,000
15	10,000
20	100,000

