Stellar Distances

The Basic Yardsticks

• The Astronomical Unit (AU)

• The Light Year (ly)

• The Parsec (pc)

THE ASTRONOMICAL UNIT

- Astronomical Unit average distance from the Earth to the Sun
- $1 \text{ AU} = 1.5 \text{ x} 10^8 \text{ km} = 9.3 \text{ x} 10^7 \text{ miles}$
- The average distance between Jupiter and the Sun is 5.2 AU.

Planets19.2 AU1 AU5.2 AU19.2 AU1 MercuryImage: StarthImage: Starth0.39 AU3. EarthImage: Starth

5. Jupiter

4. Mars 1.52 AU 6. Saturn 9.57 AU

2. Venus

0.72 AU

THE LIGHT YEAR

- One light year is the distance a beam of light travels during a one year trip across the void of space.
- Speed of Light = 186,000 miles/second
- 3 x 10⁸ meters/second
- 1 ly = 63,240 AU= 9.46x10¹² km \simeq 6 trillion miles
- Proxima Centauri is just over 4.2 ly from Earth.

• FYI...in 2016 a terrestrial planet in Proxima Centauri's habitable zone was discovered!

Betelgeuse – 300 ly

Sirius – 7 ly

Aldebaran – 76 ly

Rigel – 1000 ly

Saguaro National Park, AZ

The distance to the Andromeda Galaxy is approximately 2.2 million ly.

THE PARSEC

- This distance at which 1 AU subtends an angle of 1 arcsecond (1/3600 degree).
- 1 pc = 3.09×10^{13} km = 3.26 ly
- $1 \text{ kpc} = 10^3 \text{ pc}$
- $1 \text{ Mpc} = 10^6 \text{ pc}$

Milky Way Center (made of stars, not caramel and nougat).

The distance from Earth to the center of the Milky Way Galaxy is approximately 26,000 ly or 8 kpc.

The distance to Galaxy M63 is 35 million light years or 11 megaparsecs.

Measuring a Star's Distance

• Parallax - the apparent change in the position of a star due to the motion of the Earth; Nearby objects exhibit more parallax that remote ones.

• Distance (parsecs) = 1/(parallax angle)

$$d = \frac{1}{p}$$

Parallax

Heliocentric Stellar Parallax

Stellar Parallax Example

- Alpha Centauri: p = 0.756"
- d = 1/p = 1/0.756"
- d = 1.323 parsecs = 4.312 light years

Measuring a Star's Distance

• Parallax - the apparent change in the position of a star due to the motion of the Earth; Nearby objects exhibit more parallax that remote ones.

• Distance (parsecs) = 1/(parallax angle)

$$d = \frac{1}{p}$$

Stellar Parallax

• All Known Stars: p < 1.0"

• This means that there are no stars closer than 1 pc (3.26 ly)!

- Most of the brightest stars in the sky are so distant that their parallax angles can not be measured!
 - They are bright due to their amazing luminosities!!!!!

BRIGHTNESS

- Stellar brightness is affected by
 - Distance
 - Size
 Temperature

- There are two brightness scales...
 - Apparent Magnitude
 - Absolute Magnitude

Luminosity

• Surface temperature and surface area determine the luminosity of a star.

• Luminosity : the rate at which a star radiates energy.

Absolute Magnitude (M_v)

- The magnitude that a star would have if it were 10 parsecs away from Earth.
- <u>Absolute magnitude is another way to</u> <u>represent a star's luminosity.</u>
- To calculate M_v, you must know the star's apparent magnitude and distance (using the parallax method).

Absolute Magnitude & Luminosity

Absolute	Luminosity
Magnitude	(x Sun)
-5	10,000
0	100
5]
10	0.01

How useful is Absolute Magnitude?

- A star's luminosity is affected by...
 - Size
 - Temperature
- These things determine the luminosity and hence the absolute magnitude (M).
- A star's 'M' can easily be determined by examining its temperature (*spectroscopy*).
- Once we have 'm' and 'M', we have another way to determine the distance to that star without using parallax.

• Distance Modulus = $m_v - M_v$

•
$$m_v - M_v = 5 \log d - 5$$

• Where d is the distance to the star in parsecs.

Distance Modulus (m-M)	Distance d (pc)
-4	1.6
-2	4.0
0	10
2	25
4	63
10	1,000
15	10,000
20	100,000