PHYS 1403 Stars & Galaxies Module 1

The Orion Nebula

Visible Light

Infrared Light

Ouestions about Light. How fast is it?

The Speed of Light?

Galileo's Experiment

c = Round Trip Distance/Total Time

As a result, Galileo came to the conclusion that light traveled instantaneously.

Finite Speed of Light – Roemer (1675)

Speed of Light

• c = 299,792.458 km/sec

 We usually just round this off to be 300,000 km/sec (3x10⁸ m/s)

• 186,000 miles/sec (1.86x10⁵ miles/sec)

• Note: This the speed of light in a vacuum!

Basic

Questions about Light. What is it made of?

What is Light?

- In 1670, Isaac Newton proposed that light was made of tiny particles (corpuscles).
- In 1678, Dutch astronomer Christian Huygens proposed that light was made of tiny waves.
- In 1801, <u>Thomas Young</u> confirmed the <u>wave nature of light</u> in his double slit experiment.
- In 1860, Scottish physicist James Clerk Maxwell developed a theory describing how electricity and magnetism are related. This theory also explained that light was an 'electromagnetic wave.'
- In 1905, <u>Albert Einstein</u> proposed that light is actually composed of tiny bundles of waves called <u>photons</u>.
- Light has a <u>wave-particle duality</u>.

Models of Light

Light is an Electromagnetic Wave

- <u>Electromagnetic Waves</u> are energy-carrying waves emitted by vibrating electrons. EM waves consist of vibrating electric and magnetic fields which are perpendicular to each other.
- EM waves are also known as...
 - Light
 - Radiation
 - Photons

Electromagnetic Wave Speed

- EM wave speed is the same as the speed of light.
- This speed is a constant for all forms of EM waves, radiation, or light.
- It is 300,000 kilometers per second or 186,000 miles per second.
- $C = f\lambda$
 - speed of light (c) = frequency (f) x wavelength (λ)

Electromagnetic Spectrum

Energy Carried by Light

• "Short wavelength radiation carries more energy than long wavelength radiation".

$E = hf = \frac{hc}{\lambda}$

• Planck's Constant – $h = 6.6 \times 10^{-34} \text{ J} \cdot \text{s}$

• Result of this Equation => It shows that light waves can carry quantified amounts of energy which is a particle property.

Basic

Questions about Light. How are light and temperature related?

Temperature Scales

	Fahrenheit	Celsius	Kelvin
Boiling Point of Water	212°F	100°C	373 K
Freezing Point of Water	32°F	0°C	273 K
Absolute Zero	-459°F	-273°C	0 K

TEMPERATURE INCREASES

EM ENERGY EMITTED INCREASES

A Blackbody Radiation Curve

Blackbody - theoretical ideal emitter/absorber of EM radiation.

Wien's Law

 The wavelength of the peak of the blackbody curve is inversely proportional to the temperature.

$$\lambda_{\max} \propto \frac{1}{T}$$
$$\lambda_{\max} = \frac{2.9 \times 10^{-3} Km}{T} \qquad T = \frac{2.9 \times 10^{-3} Km}{\lambda_{\max}}$$

Basic

Questions about Light.

Can light tell us something about motion?

Doppler Shift of Sound Wave from a Passing Car

Doppler Effect...

- ...is the change in wavelength of light due to motion of the source of light.
- The Doppler Effect also occurs in water waves and sound waves.

$$\frac{\Delta\lambda}{\lambda} = \frac{v}{c}$$

The Doppler Shift Equation

This is a more 'useful' form of the equation.

Basic Questions about Light.

Can light tell us what something is made of?

The Kirchhoff-Bunsen Experiment

- Burning chemicals over an open flame resulted in a spectrum with <u>bright lines</u>.
- Each chemical element produced its own <u>characteristic pattern</u> of bright spectral lines.

Periodic Table of the Elements

Molecular hydrogen	
Neon	
Lithium	
Iron	
Barium	
Calcium	
The Sun	
Incandescent Iamp	
Fluorescent lamp	

Continuous

Emission

Absorption

Kirchhoff's First Law

- Hot, dense gases or solids produce a <u>continuous spectrum</u>.
- Example: *Light bulb filament*

Continuous Spectrum

Kirchhoff's Second Law

- Hot, rarefied (low density) gas produces an <u>emission line</u> <u>spectrum</u>.
- Example: Neon sign

Hydrogen Emission Line Spectrum

Emission Spectra -Hydrogen

Emission Spectra – Helium

Emission Spectra -Neon

Kirchhoff's Third Law

- Cool gas in front of a continuous source of light produces an <u>absorption</u> <u>line spectrum</u>.
- Example: The Sun

Absorption Spectrum-Showing Hydrogen Lines

The Sun's Spectrum

Iron (Fe) lines in the Sun's spectrum

Basic Questions about Light.

Where does light come from really?

LIGHT SOURCE = ELECTRONS

Sketches of Atoms

Bohr's Hypotheses

• Electrons can transfer between orbits so long as the electron ends up with the energy of the new level.

- The electron must gain energy to move up to the next energy level.
- The electron must lose energy to move down to the next energy level.

Emission and Absorption of Light

Emission of Light from Hydrogen

Emission Spectrum of Hydrogen and Helium

Hydrogen

Helium

What is stellar spectra and what can it reveal?

Formation of Emission and Dark Line Spectra

Cloud of cool hydrogen gas

Stellar Spectra

- A star's spectra tells us what types of chemical elements are present in the star.
- A star's spectra can also reveal something about its motion through space.
- A moving star's spectra will exhibit a <u>Doppler</u> <u>shift</u>.

The spectral lines are shifted towards the red.

This is a Doppler shift towards longer wavelengths.

This star is moving away from us.

The Doppler Shift: Waves Appear to Shorten as a Source Approaches and Lengthen as it Recedes

